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Learning in two-layered networks with correlated examples

Tom Heskes and Jeroen Coolen
RWCP† Novel Functions, SNN‡ Laboratory, Department of Medical Physics and Biophysics,
University of Nijmegen, Geert Grooteplein 21, NL 6525 EZ Nijmegen, the Netherlands

Received 26 March 1997

Abstract. On-line learning in layered perceptrons is often hampered by plateaus in the time
dependence of the performance. Studies on backpropagation in networks with a small number
of input units have revealed that correlations between subsequently presented patterns shorten
the length of such plateaus. We show how to extend the statistical mechanics framework to
quantitatively check the effect of correlations on learning in networks with a large number of
input units. The surprisingly compact description we obtain makes it possible to derive properties
of on-learning with correlations directly from studies on on-line learning without correlations.

1. Introduction

Recently, considerable progress has been made in the study of on-line learning [1–4]. The
usual assumption is that presented examples are uncorrelated in time. This assumption is not
only unnatural for biological learning systems, but also for artificial neural networks such
as, for example, those that are applied in time-series analysis. In this paper, we study the
effect of correlations on learning in two-layered perceptrons, networks that are commonly
used in practical applications.

Theoretical studies on on-line learning can be roughly divided into two groups: those
on ‘small’ networks using stochastic approximation methods and those on ‘large’ networks
using tools from statistical mechanics. In the stochastic approach, on-line learning is
described as an average process (the drift) with superimposed fluctuations (the diffusion).
General properties can be derived by making expansions for small learning parameters [4–6].
In large networks the drift for each individual weight becomes an order of magnitude smaller
than its diffusion. A description of the learning behaviour in terms of individual weights, as
in the stochastic approach, no longer makes sense and is replaced by a description in terms
of macroscopic order parameters. This is the statistical approach, which considers on-line
learning in the thermodynamical limit, i.e. in the limit of an infinitely large number of input
units [1–3].

A problem shared by both ‘small’ and ‘large’ two-layered networks, is the existence
of plateaus: long time spans during which the performance of the learning machine hardly
changes [4, 7]. Most of these plateaus are caused by the initial tendency of hidden units to
represent the same features. The breaking of this initial symmetry, which is often necessary
to make further progress, appears to be a painstaking process. In a previous study on
learning in ‘small’ networks using stochastic approximation tools, it has been shown that
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time-dependent correlations between subsequently presented training examples help to speed
up this symmetry breaking process [4]. In this paper, we will use statistical mechanics tools
to study how correlations affect the learning dynamics of ‘large’ two-layered networks.

In section 2 we start to describe the student and teacher networks and the dynamics of the
successive examples. We define the order parameters needed to compute the generalization
error. Eventually we arrive at a general description of the learning dynamics valid for ‘large’
two-layered networks, irrespective of the number of hidden units of teacher and student,
graded or non-graded, tree-structured or fully connected, and with or without adaptive
hidden-to-output weights. In sections 3–5, we treat several special cases, simple perceptron
learning (no hidden units), learning a soft-committee machine (hidden-to-output weights
are fixed) and learning a two-layered network with adaptive hidden-to-output weights,
respectively. We close the paper in section 6 with a summary and discussion of the results.

2. Theory

We consider a student network and a teacher network. Both student and teacher are two-
layered networks withN input units and one linear output unit, but may have a different
number of hidden units. Letg be a nonlinear, differentiable transfer function of the hidden
units andH be the total number of the hidden units of student and teacher together.
This system is characterized by a set of input-to-hidden weightsJi = (Ji1, . . . , JiN ) with
i = 1, . . . , H and hidden-to-output weightsw = (w1, . . . , wH ). Some of these weights
belong to the student, others to the teacher†. The idea is that the teacher, a network with
fixed weights, gives feedback about errors made by the student, a network with adaptive
weights.

Both student and teacher receive the same sequence of inputs{ξ(n)} with all ξ =
(ξ1, . . . , ξN) ∈ RN obeying a first-order Markov process such that

〈ξk(n)〉ξ = 0 〈ξk(n)ξl(n)〉ξ = δkl and 〈ξk(n)ξl(n+ 1)〉ξ = cδkl .
In other words, the components of the input vector are independently and identically
distributed with zero mean and unit variance, yet forc 6= 0 each new component is correlated
with the same component at a previous time step. Note that the stationary distribution of
input vectors is independent of the correlationc (for |c| < 1).

Given an input vectorξ, we define the ‘local fields’xi = Ji ·ξ, which, again, can belong
to either the teacher or the student. For notational convenience we restrict ourselves to fully
connected two-layered networks, but it is easy to extend the following to, for example,
tree-based architectures. The outputs of student and teacher are written

σstudent(x) =
∑

i∈ student

wig(xi) and σteacher(x) =
∑

i∈ teacher

wig(xi)

with x being a vector containing all local fields. Unless otherwise stated, we choose the
sigmoidg(x) = erf(x/

√
2) to make analytical calculations tractable.

After the presentation of thenth exampleξ(n), the student weights are updated according
to the gradient of the squared difference1 ≡ σteacher−σstudentbetween teacher and student
output. This yields for the input-to-hidden weights

Ji (n+ 1)− Ji (n) = −η1

N

(
∂

∂Ji1(n)
, . . . ,

∂

∂JiN(n)

)
12(x(n))

2
= η1

N
δi(x(n))ξ(n) (1)

† We use a notation which is slightly different from usual to stress the generality of our results.
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with δi(x(n)) ≡ wi(n)g′(xi(n))1(x(n)), and for the hidden-to-output weights

wi(n+ 1)− wi(n) = −η2

N

∂

∂wi(n)

12(x(n))

2
= η2

N
g(xi(n))1(x(n)). (2)

The learning parametersη1 andη2, which control the size of the steps, are explicitly scaled
with the input sizeN . This description, if necessary with a slightly different choice for the
functionsδi(x), is also valid for simple perceptron learning without any hidden units.

In the thermodynamic limitN → ∞, in which we will work from now on, most
properties of the system depend on the order parametersRij ≡ Ji · Jj and the hidden-to-
output weightswi . For example, the generalization errorεg = 〈12/2〉ξ, follows from

εg = 1

π

∑
i,j

βijwiwj arcsin
Rij√

(1+ Rii)(1+ Rjj )
(3)

whereβij = 1 if both i, j belong to either the student or teacher andβij = −1 otherwise.
The dynamics of the weightswi is given by (2), the dynamics of the order parameters

Rij can be written as usual [1, 2]:

Rij (n+ 1) = Rij (n)+ η1

N
[xi(n)δj (x(n))+ xj (n)δi(x(n))] + η

2
1

N
δi(x(n))δj (x(n)) (4)

where we have definedδi(x) ≡ 0 if i refers to a teacher weight.
Without any correlations, the machinery proceeds as follows. First one computes the

distribution of the local fields which, because of the central limit theorem, comes out to be
a Gaussian with covariance matrixC ≡ 〈xxT 〉x equal† to the order parametersR. Next
one turns the difference equations (4) and (2) into continuous-time differential equations, at
the same step taking averages on the right-hand side. The resulting differential equations
are of the form

dRij (t)

dt
= Fij (R(t),w(t)) and

dwi(t)

dt
= fi(R(t),w(t))

wheret = n/N is a rescaled ‘time’. In many situations the averages

Fij = η1〈xiδj (x)+ xj δi(x)〉x + η2
1〈δi(x)δj (x)〉x and fi = η2〈g(xi)1(x)〉x (5)

can be calculated analytically [8].
With correlations, the distribution of the local fields does not only depend on the order

parameters, but also has its ‘own’ dynamics. Using again the central limit theorem for large
N , we derive for the dynamics of the local fields

xi(n+ 1) = Ji (n+ 1) · ξ(n+ 1) = c[xi(n)+ η1δi(x(n))] + ui(n) (6)

with ui(n) ≡ Ji (n) · [ξ(n+ 1)− cξ(n)]. In principle we have to study the combined
dynamics of the weights and order parameters, as given by (2) and (4), respectively, and
the local fields as given by (6). Luckily, however, the time scales of these two processes
differ by a factor of orderN : the local fields change much faster than the weights and order
parameters. In the thermodynamic limit, we can ‘adiabatically eliminate the fast variables’
[6, 9], which basically means that we can act as if the local fields have reached their
stationary distribution for fixed order parametersRij and weightswi and use this distribution
to compute the averages on the right-hand sides of (4). The correlations occur because this
stationary distribution of the local fields depends onc. This may seem counterintuitive
at first: Why can we not apply the central limit theorem to derive the distribution of
xi(n) = Ji (n) ·ξ(n)? The reason is thatξ(n) is no longer independent ofJi (n): the current

† Since〈xi〉x = 0 and〈xixj 〉x = Rij .
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example is correlated with the recent examples to whichJi (n) has been adapted. This
effect, which even in the thermodynamic limit is non-negligible for nonzeroc, is captured
in (6).

The remaining task is to compute the stationary distribution resulting from the
dynamics (6). First, we observe that for fixedJi (n), the variablesui(n) are normally
distributed with average zero and covariance matrix

〈ui(n)uj (m)〉ξ = 〈(Ji (n) · [ξ(n+ 1)− cξ(n)])(Jj (m) · [ξ(m+ 1)− cξ(m)])〉ξ
= (1− c2)Rij (n)δnm. (7)

Next, because of the symmetry† δi(−x) = −δi(x), the distribution of local fieldsxi must
also be symmetric, i.e.〈xi1xi2 . . . xin〉x = 0 for any odd number of termsn. From the
stationarity condition

〈xi(n+ 1)xj (n+ 1)〉x = 〈xi(n)xj (n)〉x
and expressions (6) and (7) we obtain

Cij = 〈xixj 〉x = Rij + c2

1− c2
[η1〈xiδj (x)+ xj δi(x)〉x + η2

1〈δi(x)δj (x)〉x]. (8)

Alas, the general solution of (8) is intractable. We can, however, make an excellent
approximation by assuming that the stationary distribution of the local fields is a Gaussian‡.
Then we can compute the averages on the right-hand side of (8) and obtain a self-consistent
equation for the covariance matrixC. In fact, it can be shown that the fourth-order cumulant
(kurtosis) of the stationary distribution is of orderc4 and thus that, at least for smallc, the
assumption of normality is fair. In other words, all the following results are accurate up to
orderε = c2/(1− c2).

There is a striking resemblance between equations (5) and (8). A combination of
these expressions provides a simple and elegant summary of the effect of correlations on
the learning dynamics of two-layered networks (including simple perceptrons and soft-
committee machines):

dR
dt
= F(C,w) and

dw

dt
= f(C,w) (9)

C = R+ εF(C,w) (10)

with R being the set of order parameters,w being the set of hidden to output weights,
C being the stationary covariance matrix of the local fields andF andf being functions
that can be found in papers describing the (uncorrelated) learning dynamics of specific
architectures and problems [8, 10]. The remarkable thing here is that in order to study
learning with correlated examples we do not need to compute new difficult integrals.
Provided that the normality assumption holds, which can easily be checked if there is
any doubt, the dynamical equations for uncorrelated patterns are all we need to know to
compute the dynamics for correlated patterns. In the next sections we will give specific
examples.

3. Learning a simple perceptron

In this section we will consider simple perceptron learning, i.e. learning a network without
hidden units. Simple perceptron learning fits into the general description of the previous

† Because of this condition, the article excludes networks with thresholds.
‡ If i belongs to the teacher, the distribution ofxi is indeed a Gaussian.
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section if we takeη2 = 0 and∀iwi = 1 with i = 1, 2. We seti = 1 aside to the student and
i = 2 to the teacher. Initial conditions are set toR11 = 1,R12 = 0 with a normalized teacher
vector, i.e.R22 = 1. For convenience, we chooseη1 = 1. In section 3.1 we study Hebbian
learning for which we can compare the calculations of section 2 with exact calculations.
In section 3.2 we study a graded-response perceptron learning by on-line gradient descent.
Here we compare our (approximate) analytical results with computer simulations.

3.1. Hebbian learning

Hebbian learning is slightly different from the gradient descent learning rule (1) treated in
the rest of the paper. We haveg(x) = sign(x) andδ1(x) = σteacher(x) = sign(x2), i.e.

J1(n+ 1) = J1(n)+ 1

N
sign[x2(n)]ξ(n).

A perceptron with binary output can serve as a tool for classification instead of regression.
The generalization error is then defined as the probability that a new randomly drawn input
is misclassified and reads (see, for example [11]):

εg(t) = 1

π
arccos

[
R12(t)√
R11(t)

]
. (11)

Let us first compute the evolution of the order parameters following the scheme of
section 2. The averages (5) become

F11 = 〈x1 sign(x2)〉x + 1= 2

√
2

π
C12+ 1 and F12 = 〈|x2|〉x =

√
2

π

where we used the Gaussian assumption only in the first equation. Using (9) and (10), we
arrive at the set of differential equations

dR11(t)

dt
= 2

√
2

π
R12(t)+ 1+ 4ε

π
and

dR12(t)

dt
=
√

2

π

with solution

R11(t) = 1+
(

1+ 4ε

π

)
t + 2

π
t2 and R12(t) =

√
2

π
t.

Alternatively, the evolution of the normR11(t) can be calculated exactly using the
evolution of the student vector

J1(t) = J1(0)+ 1

N

Nt∑
n=0

sign[x2(n)]ξ(n).

Straightforward calculations then give

R11(t) = J1(t) · J1(t) = 1+
(

1+ 4

π

∞∑
n=1

cn arcsincn
)
t + 2

π
t2

= 1+
(

1+ 4ε

π
+ 2ε2

3π
+ · · ·

)
t + 2

π
t2

and the same expression as before for the overlapR12(t).
Both methods are indeed equal up to orderε. The evolution of the generalization

error (11) for c = 0.0, 0.6 and 0.9 is shown in figure 1(a). We compare the theory
(full curves) with the alternative method (symbols). Even for large correlations, the
symbols hardly leave the full curves, i.e. the Gaussian assumption seems to be a good



4988 T Heskes and J Coolen

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

ge
ne

ra
liz

at
io

n 
er

ro
r

(b)

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5
ge

ne
ra

liz
at

io
n 

er
ro

r

time

(a)

Figure 1. Correlations slow down the learning process. The generalization error, i.e.
expression (11) in (a) and expression (3) in (b), is plotted as a function of timet for correlations
c = 0.0, 0.6 and 0.9, (from bottom to top). (a) Hebbian learning. The theory (full curves) is
checked by the alternative method (symbols). (b) Learning by on-line gradient descent. The
theory is checked by simulations (symbols) for a network withN=100 input units, averaged
over 100 independent runs.

approximation. Note also that the performance of the student perceptron at any timet for
c = 0.9 is much worse than forc = 0.6. In other words, learning a simple perceptron with
dependencies between successive examples decreases the learning performance. Intuitively
we can imagine this since correlations slow down the process of covering the entire sample
space, for example, for high correlations, examples are drawn for a relatively long time
from a small region of the whole sample space.

3.2. Learning by on-line gradient descent

As a simple example of on-line gradient descent we consider in this section a graded
response perceptron [2] whose output equals the sigmoidg(x) = erf(x/

√
2). For this

specific choice of the transfer function the averages (5) can be performed analytically (see
[2]). Computation of the evolution of the covariancesC11 andC12 and the order parameters
R11 andR12 then becomes a straightforward exercise in numerical analysis, for example,
by using the fourth-order Runge–Kutta formula [12].

In figure 1(b) we show the generalization error (3) as a function of timet for c = 0.0,
0.6 and 0.9. The theory (full curves) is now checked by simulations (symbols) for a network
with N = 100 input units averaged over 100 independent runs. Simulations are done on
the level of (1). Forc = 0.9 we see that the theoretical curve deviates only slightly from
its simulation. As in the case of Hebbian learning, correlations slow down the learning
process.

4. Learning in soft-committee machines

The effect of correlations on the learning performance in the examples presented in the
previous section is negative. In this section, we investigate how correlations affect learning
in soft-committee machines.

The generalization performance of a soft-committee machine as a function of time is
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often dominated by a long time span in which this performance hardly improves [7, 8]. This
so-called ‘plateau’ is in fact caused by a saddle point in the dynamics of the order parameters.
The delayed repulsion from this saddle point is due to the fact that the corresponding positive
eigenvalue of the linearized system, around this saddle point, is very small in comparison
with the absolute values of the negative eigenvalues. The equivalence between the two sets
of functionsF in (9) and (10) makes it surprisingly straightforward to analyse the correlated
learning dynamics in the neighbourhood of such a saddle point or, in general, of any fixed
point.

The output unit of soft-committee machines is linear and the couplings from all the
hidden units to the output unit are positive and of unit strength, i.e.∀iwi = 1 andη2 = 0.
In other words, we only have to consider the dynamics of the order parameters. Linearization
of the learning dynamics near a fixed point, whereF(Cfp) = 0, yields

dR
dt
= H(R−Rfp) with H = ∂F(C)

∂R = ∂F(C)
∂C

∂C
∂R =

∂F(C)
∂C

[
1I|R| − ε ∂F(C)

∂C

]−1

with all derivatives evaluated atC = Cfp and where the last step follows from differentiation
of (10) with respect toR. In this symbolic notationR is best read as a vector consisting
of all, say |R|, order parameters which makesH an |R| × |R| matrix; 1I|R| stands for the
|R|-dimensional identity matrix. The eigenvaluesλ of this matrix determine the stability
of a fixed point. From (10) we deduce thatRfp = Cfp. In other words, a fixed point for
learning without correlations is also a fixed point for learning with correlations. But then

∂F(C)
∂C

∣∣∣∣
Cfp

= ∂F(R)
∂R

∣∣∣∣
Rfp

≡ H0 and thus H = H0[1I|R| − εH0]−1

whereH0 refers to the matrix forc = 0. Correlations do not change the eigenvectors of
the matrixH, but do transform an eigenvalueλ0 of the matrixH0 into

λ = λ0

1− ελ0
and thus Re(λ) = Re(λ0)+ ε[Re(λ0)

2− Im(λ0)
2] + · · · .

The eigenvalue with the largest real part is the most interesting one. In case of a stable fixed
point, the least negative eigenvalue governs the speed of convergence. With correlations
this eigenvalue then becomes less negative, and thus increases the time to convergence.
This is consistent with our previous results in section 3. The most positive eigenvalue
rules the repulsion from a saddle point and is thus a key factor for determining the length
of a plateau. Following the general setting of this paper, we should say that the effect
of correlations depends on whether the real part of the largest eigenvalue dominates the
imaginary part. In the situations we have encountered, both in our own experience and in
the literature, the imaginary part is either completely absent or smaller (in absolute sense)
than the real part. Calling this the typical situation, we conclude that correlations make
unstable points more unstable and thus lead to shorter plateaus. The length of the plateau
is inversely proportional to the most positive eigenvalueλ; the shortening, as a result of
correlations, is therefore proportional toε:

shortening∝ 1

λ0
− 1

λ
= ε. (12)

As an example, let us consider a soft-committee machine with two hidden units (i = 1, 2)
trained to implement a simple task defined by a single-layer teacher (i = 3) as in [2]. The
averagesF11, F12, F22, F13 andF23 have been computed analytically and are used in (9)
and (10) to compute the evolution of the order parameters. In order to show the effect
of the correlations on the length of the plateau, we choose zero correlations initially, and
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Figure 2. Correlations shorten the length of the plateau for soft-committee machines. The
generalization error (3) is plotted as a function of timet for correlationsc = 0.0, 0.6 and 0.9
(from right to left). A soft-committee machine with two hidden units, is trained, with learning
parameterη1 = 1.0 in (a) and η1 = 0.5 in (b), to implement a simple task defined by a
teacher perceptron. Initial conditions are set according toR11 = R12 = R13 = R23 = 0.0 and
R22 = 0.0001.

add correlations when the system gets stuck at the saddle point. In figure 2 we show the
evolution of the generalization error forc = 0.0, 0.6 and 0.9. The learning parameter in
figure 2(a) is equal to 1 whereas in figure 2(b) the learning parameter is equal to 0.5. As
predicted by (12), the shortening when going from correlationsc = 0.6 to c = 0.9 is much
more prominent than when going fromc = 0.0 to 0.6. Furthermore, the shortening is about
the same for both learning parameters.

5. Learning with adaptive hidden-to-output weights

No such general statements as in the previous section can be made with adaptive hidden-
to-output weights. For any particular situation, however, the effect of correlations can be
calculated using the set of expressions (9) and (10).

As an illustration we consider a student with two hidden units (i = 1, 2) trained by a
teacher, also with two hidden units (i = 3, 4). The teacher is chosen to be symmetric, i.e.
R33 = R44 = 1 andR34 = 0, with hidden-to-output weightsw3 = w4 = 1. The student
is initialized with small weightsJi and wi and has learning parametersη1 = η2 ≡ η.
Initialization with small weights is the standard procedure in practical applications of
backpropagation for multilayer perceptrons, which supposedly reduces the chance to end
up at a suboptimal local minimum. The origin, however, is a saddle point where all
derivatives are zero. It is different from the saddle points usually studied where the problem
is to break the symmetry between the student’s hidden units. The escape from the origin
saddle point, on the other hand, appears to require no symmetry breaking, yet a combined
increase of the hidden-to-output weightsw1 = w2 ≡ w and an alignment of the student
weightsJ1 andJ2 to the teacher weightsJ3 andJ4, i.e. an increase of the inner products
R13 = R14 = R23 = R24 ≡ R. The evolution ofw andR follows from (9) and (10) where
the functionsF andf computed in [8, 10] are linearized around the origin:

d

dt

(
w

R

)
= 2η

π

(
2γ

√
2

1
2

√
2 0

)(
w

R

)
with γ = η

π

c2

1− c2
. (13)
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Figure 3. Correlations shorten the length of the plateau
for two-layered networks. The generalization error (3) is
plotted as a function of timet for correlationsc = 0.0,
0.2, 0.4, 0.6, and 0.8 (from right to left). Both student and
teacher are two-layered networks with two hidden units. The
full curves are simulations, the broken curves correspond to
the theoretical approximation (13). The simulations were
done with a network of sizeN = 1000 averaged over 50
independent runs.

The derivatives of the inner productsR11, R12 andR22, concerning only student weights,
are of higher order inR andw and do therefore not influence the escape from the origin.
This escape is dominated by the eigenvalue

λ = 2η

π

(
γ +

√
1+ γ 2

)
which, throughγ , strongly depends on the amount of correlationsc. An important side
effect is that with adaptive hidden-to-output weights the eigenvectors and thus the directions
of escape are affected by the amount of correlations. In our simulations, the student network,
after leaving the first plateau due to the saddle point at the origin, gets stuck at another saddle
point. The different escape directions determine that the values of the order parametersR
and weightsw, and thus the height of this second plateau, depend on the correlationc.

In figure 3 we show simulations of the evolution of the generalization error (3) as a
function of timet for different amounts of correlationsc for fixedη = 1. The student weights
are initialized such thatR12 = R13 = R14 = R23 = R24 = 0 andR11 = R22 = 10−12, and
with w1 = w2 = 0. The simulations, indicated by the full curves, are on the level of
the weights as given by (1) and (2). The broken curves result from set (13). These
differential equations predict the time at which the networks escape from the saddle point
quite accurately, but are, of course, no longer valid after this escape. Furthermore, it can
be seen that correlations shorten the plateau and that this effect roughly scales withc2.

6. Summary and discussion

We have studied an exactly solvable model of learning in ‘large’ two-layered networks with
correlations between successive training examples. Correlations change the (stationary)
distribution of the local fields. Assuming that this distribution is a Gaussian, we arrived at
a set of expressions which can be solved numerically to yield the evolution of the order
parameters and the hidden-to-output weights. We came to the remarkable conclusion that
the expressions that govern the dynamics for uncorrelated patterns are all that is needed
to compute the (approximate) dynamics for correlated patterns. These dynamical equations
are accurate up to first order inε = c2/(1 − c2), where c is the correlation parameter
(|c| < 1), but in simulations appear to give a more than reasonable approximation for
correlations as high asc = 0.9. For several networks, including simple perceptrons,
soft-committee machines and two-layered networks with adaptive hidden-to-output units,
we investigated the evolution of the generalization performance for different amounts of
correlations and compared it with our theoretical results. The effect of correlations on
networks with thresholds is somewhat more complicated and deserves further attention.
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In principle, we could argue that it is a good idea to add correlations when learning
seems to be stuck at a saddle point, yet to prevent correlations during any other stage of the
learning process. The beneficial effect on the plateau, however, is for the ‘large’ networks
studied in this paper relatively small and might as well be achieved through a simple increase
in the learning parameter. The effect of correlations reported in studies on backpropagation
in ‘small’ multilayer perceptrons is much more dramatic: here the presence of correlations
can make the difference between at some point leaving the plateau or being stuck forever
[4]. The reason is that in those studies learning is trapped not at a saddle point, but on a
‘real’ plateau in weight space where the largest eigenvalue is zero instead of positive. An
escape from this plateau requires both an increase of the weights and, at the same time, a
breaking of the symmetry between the hidden units. In the ‘large’ networks studied in the
statistical mechanics framework, we have not yet, to the best of our knowledge, encountered
such a combination.
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